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The spin dynamics for two coupled spin-1/2 nuclei evolving under isotropic chem!cal shifts 
and a dipole-dipole interaction, in the high-field limit, is presented using Fano's unit spherical 
tensors (J~(Ii, Ij) as a basis set. For simplicity, relaxation effects are ignored. The results are 
used to discuss the frequently used dipole-dipole approximations for both homonuclear and 
heteronuclear spin systems. In particular, it is shown that it is possible to analyse N M R  spectra 
of two spin-1/2 systems where the chemical shift differences and the dipolar interactions are 
of similar magnitude. 

1. In t roduct ion  

In an earlier paper [1], it was demonstrated that Fano's unit spherical operators 
~]~(I1,I2) can be used to simplify the algebra required to describe the spin 
dynamics of two spin-1/2 nuclei, evolving under the combined action of scalar cou- 
pling and Zeeman offset. For example, from a comparison of unit spherical tensor 
operators Lr~(/1,I2) with coupled irreducible operators ~r~(kl,k2) [2], it was 
shown that the use of the former could be used to reduce the number of terms in the 
density matrix required for a complete solution of AA spin systems by up to 50%. 
This has clear implications for three or more coupled spin systems. In particular, it 
should be noted that regardless of the number of spins involved only one Clebsch- 
Gordan coefficient is required for unit spherical operators. This is in marked con- 
trast to the coupled irreducible tensor operators ~r~(kl,... kn), where it is necessary 
to evaluate concatenated Clebsch-Gordan coefficients, repeatedly. 

To our knowledge no one has given the full solution for two coupled spin system 
evolving under the combined action of a magnetic dipole-dipole interaction and 
differing resonant offsets, at least in terms of unit spherical operators. Since the 
dipole-dipole interaction often plays an important role in determination of (i) 
structures, (ii) order in aligned molecules, and (iii) multiple quantum transitions, 
the neatest solution of this problem should be of interest. In this paper, the com- 

© J.C. Baltzer AG, Science Publishers 



2 G.J. Bowden, M.J. Prandolini/Completesolutionfor two coupledspins 

plete solution, for both homonuclear AA, AB and heteronuclear AX spin systems 
is presented and discussed, in the secular approximation. 

The definition of a unit spherical operator is given by 

(I1MI'fJ~(Ia'Ia)[I2M2) = ( - 1 ) I 2 - M ' ~ ( - M l l l  KQ M212) 6I'I3614h' 

(1) 

where/1 and/2 represent the coupled spin manifolds. To reflect the Hermitian nat- 
ure of the Hamiltonian and the density matrix, it is advantageous to define the sym- 
metric and antisymmetric combinations 

1 ((J~(/1,/2) + ~rKQ(h, Ii)), 

(]~(Ii,I2, a) = --~2~2 (~f~(I1,I2)- U_KQ(I2, I1)). (2) 

Note that the 1 /v~  ensures that orthonormality of the symmetric and antisym- 
metric combination is preserved, i.e. 

Yr [(~J~(/1,'2, ct)) t U~¢'('3, '4, o~t)] = (~I, Ia~IzI,~aa,(~KK'~Q~. (3) 

2. Two coupled spins evolving under  dipolar and chemical shift interact ion 

In the decoupled representation the Hamiltonian for two coupled spins evolving 
under a Zeeman offset and a dipolar interaction, can be written in the form 

= h(AwlIlz + AcOEIzz) + D(IlzI2z - ¼(I~-I 2 + I~-I~)), (4) 

where (i) we have effected a transformation to the rotating frame, (ii) 

D - /~7172h (1 - 3 COS2 012\ 
4r~ \ ~ / ,  (5) la 

(iii) Awl,2 are the resonant offsets for the spins, (iv) rl2 is the vector joining the 
two spins and (v) 012 is the angle made by r12 with the z-axis. 

In the coupled representation, two spin-1/2 nuclei couple to form either I = 1 
or 0. On transforming eq. (4) into unit spherical tensors, where I1 and/2 take on 
values (1 or 0), we find 

X---h(x/2Ac~fyl(1 1)+  v~65rl (0,1, a)) + x/~ ~2 , --~--DU~ (1, 1), (6) 

where 

As = l(A l + A 2), 6 = ½(A I - A 2) (7) 
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Since brl(0, 1,a) does not commute with (J02(1, 1), it is not possible to separate 
the Zeeman 5ffz and the dipolar terms ~ o  in the evolution operator 2~(t) 
= e - i (Tzz+~D) t /h ,  unless 6 is identically equal to zero. 

The time evolution for all tensors (]~ (I1,12, a) (a = s, a, K ~< 2), evolving under 
the Hamiltonian (6), is given in table 1. Note that the antisymmetric and symmetric 
form of the tensors U~ (1,0, s) and (J~ (0, 1, a), respectively, are not given because 
both (t]~ (1,0,s), (J0x(0, 1,s)) and ((J01(0, 1,a), (]01(1, 0, a)) are linear combinations 
of each other. This table was prepared using Mathematica 1 to project out the neces- 
sary time dependent coefficients. For example, the coefficients of the unit spherical 
tensors are given by 

pl~(II,12,0~,t) = TrIU~( l l , I2 ,  o~)te-i~t/hp(O)ei~t/h] , (8) 

where p(0) is the density matrix at t = 0. The evolution of the unit spherical tensors 
under "hard"  rf-pulses, along the x and y axes for two coupled spin, has already 
been given in tables 10(a) and (b) of[l]. 

3. C o m m o n  approximat ions  for dipolar  coupled spins 

The Hamiltonian of eq. (4) is the high-field approximation for two dipolar 
coupled spins [3]. However, in the literature two further approximations are fre- 
quently employed to simplify the calculations. 

For two unlike spins, the flip-flop term I+I~ + I l I  ~ is usually dropped because 
this term involves an exchange of energy. Within this approximation 

~ul = h(Awlllz + Aw212z) + DllzI2z , (9) 

and we see that, unlike in eq. (4), the chemical shift and dipolar terms now com- 
mute. This simple approximation greatly simplifies the evolution tables because 
evolution under the chemical shift and effective dipole-dipole interaction can now 
be separated [3]. 

For two nearly alike spins, eq. (4) is often written in the form 

X = h(AWlllz + Aw212z) + D(3IlzZ2z - - l I l "  I2), (10) 

and it is customary to drop the scalar term 11 • I2 [4]. This results in the Hamilto- 
nian 

~ t  = h(AwlIlz + Aw212z) + 3DIlz, Izz, (l 1) 

and we see that the form of HI is the same as that for 9£ul for unlike spins except 
that the strength of the dipole-dipole coupling is 3/2 times stronger. Once again the 
evolution tables are deceptively simple because the chemical shift and dipolar 
terms appearing in eq. (1 1) commute. 

I Mathematica is a registered trademark of Wolfram Research, Inc. 
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Table  1 
Evolu t ion  o f  the unit  spherical tensors 0~(Ii, Ii, a), a = s, a, under  the influence o f  a chemical  shift 
and  dipolar  coupling.  Fo r  the evolut ion o f  the an t i symmetr ic  tensors (not  explicitly included),  replace 
a by s and s by  a. This table holds for  bo th  AB and A X  systems. 

11~o (0, 0)21 ) = ~o(0,  0) (D 2 + 862(1 + cos A12t))/R 2 + ~oo(1,1)862(1 - cos Al2t)/(x/3R 2) 

- iUo l (1,0, s)2v/26(sin A,2t)/R + 01o (0, 1, a)2v:2Dr(1 - cos A,2t)/R 2 

- 002(1, 1)1662(1 - cosAi2t)/(x/-6R 2) 

1L0°o (1, 1)lfl = ~o(0,  0)862(1 - cos A,2t)/(x/3R 2) + ~oo(1, I ) (5R 2 + D 2 + 1662 cos A,2t)/(6R 2) 

+ i Uo l (1,0, s)ar(s in  Al2t)/(v~R) - Uo l (0, 1, a )aDr(1  - cos AI2t)/(x/6R 2) 

+ 0o2(1, 1) vr2(R 2 - 0 2 - 1662 cos A12t)/(6R 2) 

210o 1 (1,0, s)l~ ) = - i~o(0  , 0)2x/26(sin A,2t)/R + i~oo(1 , l)2v/66(sin Al2t)/(3R) 

+ ~:~ (1 ,0 , s ) cos  Ai2t + i0~ (0, 1,a)D(sinAl2t)/R 

- i ~:o2 (1, 1)46(sin AI2t)/(vr3R 2) 

21 0~ ( 1,0, s)21) = 0~ (1,0, s) (A co s A,4 t + B co s A24 t) / R  + i 0~ ( 1,0, a) (A sin A,n t + B sin ,~24 t) / R  

- i0~ (1,1, s) v:26(sin Al4t - sin A24t)/R - 0~ (1, 1, a )v~6 (cos  A14t - cos A24t)/R 

- i U2(1 , 1, s)v/26(sin A14t - sin A24t)/R - 02(1,  1, a )v~3 (cos  A14t - cos/~24t)/R 

210ol (0, 1,a)lf l  = ~00(0, 0)2x/'2Dr(1 - cos AI2t)/R 2 - ~oo(1, I )2x/6Dr(1 - cos AI2t)/(3R 2) 

+ i0~ (1,0, s)D(sin AI2t)/R + 0~ (0, 1, a)(166 2 + D 2 cos Al2t)/R 2 

+ 0g(1,  1)4D6(1 - cos Ai2t)/(x/3R 2) 

(o, 1, s)W = 0~ (0, 1,s)(A cos Ai3t + Bcos  A23t)/R - i~/~ (0, 1, a)(A sin Al3t + Bs in  A23t)/R 

+ i0~ (1,1, s)v:26(sin Al3t - sin A23t)/R - 0~ (1, 1, a) x/~6(cos AI3t - cos A23 t)/R 

- i Lr2(1, 1, s )v~6(s in  A13t - sin A23t)/R + 02(1,  1, a)v:26(cos Al3t - cos A23 t)/R 

1~001(1,1)~ ) = 0o1(1, 1) - a cons tan t  of  the mot ion  

/1 0~ (1, 1, s)21 ~ = - i U~ (1,0, s) x/26(sin Al4t -- sin A24t)/R - 0~ ( 1, O, a) x/26(cos A14t - cos A24t)/R 

+ i0~ (0, 1, s )v~6(s in  Ai3t - sin A23t)/R - 0~ (0, 1, a )v~6 (cos  A13t - cos A23t)/R 

q-- 0~ (1, 1, s)(B(cos Ai3t + cos AI4t) + A(cos A23t q- cos A24t))/(2R) 

- i0~ (1, 1, a)(B(sin Al3t - sin Ai4t) d- A(sin A23t - sin A24t))/(2R ) 

- 02(1,  1, s)(B(cos Al3t - cos Al4t) + A(cos A23t - cos A24t))/(2R) 

+ iU2(1, 1, a)(B(sin A13t + sin A14t) + A(sin ),23t + sin A24t))/(2R) 

Table 1 continued 
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T a b l e  1 ( con t inued)  

11 (J02(1, 1)11 ) = - ~0(0,  0)8x/262(1 - cos  A,2t)/(v~R 2) 

+ ~go (1, 1)x/2(R 2 - D 2 - 1662 cos AI2t)/(6R 2) 

- i(]o 1 (1,0,  s)a6(sin Ai2t)/(x/~R) + (J~ (0, 1, a)aD6(1 - cos Al2t)/(v~R 2) 
+ (J2(l ,  I ) (2R  2 + 92  + 1662 cos AI2t)/(3R 2) 

~(J12(I, l ,s)~1 ) = - i~rl (1,0,  s)x/26(sin  A14t - sin A24t)/R - ~J~ (1,0,  a ) v ~ 6 ( c o s  Al4t - cos  A24t)/R 

- i ~r~ (0, 1, s) v/26(sin )H3 t - sin A23 t)/R + U~ (0, 1, a) V'26(cos A13 t - cos  A23 t)/R 

- (]~ (1, 1, s ) (B(cos  AI3t - cos  Al4t) + A (cos A23t - cos  A24t))/(2R) 

+ i(]~ (1, 1, a ) (B(s in  A13t + sin A14t) + A(s in  A23t + sin A24t))/(2R) 

+ 6'~(1, 1, s ) (B(cos  A13t + cos  Al4t) + A(cos  A23t + cos  A24t))/(2R) 
- i(12(1, 1, a ) (B(s in  A13t - sin Al4t) + A(s in  A23t - sin A24t))/(2R) 

0 2 (1, I, s) cos A34 t + i 022 (1, 1, a)  sin A34 t 

= e -i~t/h,  R = (D 2 + 1662) I/2, 

)~12 = -IR),X13 --'-- ~-o - 1( 2 9  "{- R) ,  
Al4 = - A ~  -- ~(2D + R),  A23 = A~ - ¼(2D - R),  
A24 = - A ~  - ~(2D - R) ,  A34 -2Ao3, 
A = ½(R - D), = ½(R + D). 

The underlying reason for dropping the scalar term in eq. (10) is a little elusive. 
If the chemical shift difference 6--+ 0, then eq. (6) reduces to 

X = hx/2A~(J01 (1, 1) + @ D U 2 ( 1 ,  1), (12) 

which is block-diagonal in I = 1. Thus the spin I = 1 state is totally decoupled 
from the spin I = 0 state. As a result we can treat the spin system as a simple I = 1 
system, because no admixing occurs between the I = 0 and I = 1 spin states avail- 
able to the system. Consequently, the I1 -I2 scalar term appearing in eq. (10) is 
simply a constant and can be safely ignored. 

In this paper no such approximations have been made other than that of the 
secular approximation. Thus table 1 can be used to obtain results for the two cases 
discussed above, simply by setting 6 >> D for dissimilar spins and 6 << D for simi- 
lar spins. 

Using table 1 it is easy to show that following a r~/2 pulse, the Fourier trans- 
formed N M R  frequencies are given by 

/~14 --- - t-[At~ q- 0 / 2  -~- R / a ] ,  

"~24 ---- -4- [A~ -+- 0 / 2  - R /a] ,  

= D / 2  + R / a ] ,  
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= D / 2  - R / 4 ] ,  

where 

R = v/D 2 + 1662 . 

These frequencies are similar to but not identical with those of 5£ul (9): 

A14 = ±[A~' + D/2 + 6], 

(13) 

(14) 

A24 = -t-[Ao3 + D / 2  - 6], 

A23 = +[A~ - D/2 + 6], 

A13 = +[A~ - D/2 - 6]. (15) 
In the case of heteronuclear spins 6 > > D  and so R---~ 46. Thus eq. (13) converges 
to eq. (15), as expected. For homonuclear spins 6 << D, and so R--* D. In this case 
(i) the magnitudes of the terms associated with the )~24 and Aa3 N M R  frequencies 
vanish, and (ii) the difference between/~14 - -  )k13 is found to be 3/2 times greater 
than that OfAl4 - A13, as expected. 

Note that when 6 is non-zero, admixing will take place between the spin 0 and 1 
states available to the system. Thus the N M R  frequencies are not determined by 
the dipole-dipole coupling strength (3/2)D, but rather by D/2 + x/D 2 + 1662/4. In 
addition, it should be noted that the chemical shift and dipolar terms in eq. (10) 
no longer commute with each other. Thus conclusions drawn using simplified evo- 
lution tables, based on eq. (11), will almost certainly be in error. This comment 
however does not apply to table 1 which covers both extremes discussed above and 
all the cases in between. 

4. Discuss ion 

As mentioned earlier, unit spherical tensors provide a good basis set for the 
description of multi-spin systems, because of their superior mathematical proper- 
ties. However it should be acknowledged that in order to use the projection formula 
of(8), it is necessary to know the eigenfunctions and eigenvalues of the Hamilton±an 
in question. For three or more spins, some exact solutions are available in the litera- 
ture. The case of three spin-1/2 nuclei has been examined by [5,6], four spin-1/2 
nuclei by [7], five spin-1/2 by [8] and for six spin-1/2 nuclei by [9]. In general, such 
solutions are only possible if the spin system in question is highly symmetric. 

It goes without saying that the preparation of evolution tables for three or 
more spins presents a formidable problem because the number of unit spherical ten- 
sors available to the spin system increases rapidly as more spins are added to the 
system. Nevertheless, if the exact eigenfunctions and eigenvalues are known, alge- 
braic computer programs such as Mathematica can be used in conjunction with 
the projection formula of(8) to detail the evolution of a spin system. A general pro- 
gramme for this purpose is available upon request. 
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